Enrollment No: _____

Exam Seat No: _____

C. U. SHAH UNIVERSITY Winter Examination-2021

Subject Name: Mathematical Methods - I

Subject Code: 5SC03	MAM1	Branch: M.Sc. (Mathematics)		
Semester: 3	Date: 14/12/2021	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	(a)	State second shifting theorem for Laplace transform.	02
	(b)	$L^{-1}\left\{\frac{1}{s^{\frac{7}{2}}}\right\} = \underline{\qquad}.$	02
	(c)	Define: Error function.	01
	(d)	$L\left\{\frac{f(t)}{t}\right\} = $	01
	(e)	Find $Z\left(\frac{1}{n!}\right)$.	01
Q-2		Attempt all questions	(14)
	(a)	If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, evaluate u_2 and u_3 .	05
	(b)	If $L{f(t)} = \overline{f}(s)$ then prove that $L{t^n f(t)} = (-1)^n \frac{d^n}{dx^n} [\overline{f}(s)].$	05
	(c)	Find $L\{\cos 2t + t^2 \sin at + 2 \sin^2 t\}$.	04
		OR	
Q-2		Attempt all questions	(14)
	(a)	Find the Z transform and region of convergence of	05
		$u(n) = \begin{cases} 4^n & \text{for } n < 0\\ 2^n & \text{for } n \ge 0 \end{cases}.$	
	(b)	Solve the differential equation $\frac{d^{2y}}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x} \sin x y(0) =$	05
		0, y'(0) = 1 by using Laplace transform.	
	(c)	Prove that $L\{J_0(t)\} = \frac{1}{\sqrt{s^2 + 1}}$.	04
		N UNIV.	Page 1 of 3

Q-3 Attempt all questions

(a) Evaluate:
$$L^{-1}\left\{\frac{e^{4-3s}}{(s+4)^{\frac{5}{2}}}\right\}$$
 05

(b) Find
$$Z^{-1}\left\{\frac{2(z^2-5z+6.5)}{(z-2)(z-3)^2}\right\}$$
, $2 < |z| < 3$. 05

(c) If f(t) is periodic function with period T then prove that 04

$$L\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt.$$

OR

Q-3		Attempt the Following questions	
	(a)	State and prove Convolution theorem for Laplace transform.	05
	(b)	Evaluate: $\int_0^\infty e^{-t} \left(\int_0^t u^2 \sinh u \cosh u \ du \right) dt$.	05
	(c)	If $\{u_n\}$ be any discrete sequence and $Z\{u_n\} = U(z)$ then prove that	04
		$(i)Z(a^{-n}u_n) = U(az)$ and $(ii)Z(a^nu_n) = U\left(\frac{z}{a}\right)$.	
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	(a)	State Dirichlet's condition for Fourier series.	02
	/- \	(0; -2 < x < -1)	
	(b)	Check whether the function $f(x) = \begin{cases} k; & -1 < x < 1 \text{ is even or} \\ 0: & 1 < x < 2 \end{cases}$	02
		odd?	
	(c)	Show that $\mathcal{F}[xf(x)] = i \frac{d}{d\lambda} (F(\lambda))$	02
	(d)	Define finite Fourier sine transform.	01
Q-5		Attempt all questions	(14)
	(a)	Find the complex Fourier series of $f(x) = e^{-x}$, $-\pi < x < \pi$ and	05
		$f(x+2\pi).$	
	(b)	State and prove Parseval's formula for Fourier series.	05
	(c)	Find Fourier sine series of period 4 for the function $\frac{2\pi}{3}$	04
		$f(x) = \begin{cases} 2x & ; 0 < x < 1 \\ 4 - 2x : 1 < x < 2 \end{cases}$	
		OR	

(14)

Attempt all questions Q-5

(a) Find the Fourier series of
$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} ; -\pi < x < 0\\ 1 - \frac{2x}{\pi} ; 0 < x < \pi \end{cases}$$
 and hence 06

deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
.

(b) Find Fourier cosine transform of
$$e^{-x^2}$$
. 05
(c) If $F(\lambda)$ is Fourier transform of $f(x)$ then prove that 03

$$\mathcal{F}[f(ax)] = \frac{1}{a}F\left(\frac{\lambda}{a}\right), a \neq 0.$$

Q-6 Attempt all questions

Solve integral equation $\int_0^\infty f(v) \cos \lambda v \, dv = \begin{cases} 1 - \lambda \ ; \ 0 \le \lambda \le 1 \\ 0 \qquad ; \ \lambda > 1 \end{cases}$ 07 **(a)** and hence evaluate $\int_0^\infty \frac{\sin^2 t}{t^2} dt$.

(**b**) Find Fourier transform of $f(x) = e^{-ax^2}$; a > 0 and hence deduce 07 that $F\left(e^{-\frac{x^2}{2}}\right) = e^{-\left(\frac{\lambda^2}{2}\right)}$.

OR

Q-6 **Attempt all Questions**

- (14)(a) Find the temperature u(x, t) in a slab whose ends x = 0 and x = a09 are kept at temperature zero and whose initial temperature is $\sin\left(\frac{\pi x}{a}\right)$.
- (b) Express $e^{-x} \cos x$ as a Fourier cosine integral and show that 05 $e^{-x}\cos x = \frac{2}{\pi}\int_0^\infty \frac{(\lambda^2+2)}{\lambda^4+4}\cos \lambda x \ d\lambda.$

(14)

(14)